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Abbreviations  
AI: Artificial Intelligence 
BMP: Bonseyes AI Marketplace 
DNN: Deep Neural Network 
NEMO: NEural Minimizer for pytOrch 
PULP: Parallel Ultra Low Power 
RISC:  Reduced Instruction Set Computer 
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Executive Summary 
 
This document includes the structure and the first content of the framework to design and deploy AI 
tools on ultra-low power multicore platforms. The target platform is PULP, based on the open-source 
ISA RISC-V.  
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1 Introduction 
The Bonseyes AI Marketplace is a web platform that connects researchers, developers, and companies 
to procure, collaboratively build, and trade AI Applications. Its goal is to facilitate collaboration 
between researchers and industry to speed up the process of building and deploying AI-base solutions 
to solve real-world challenges defined by the industry.  
 
BonsAPPs will provide to researchers, data scientists, developers and industries the various number 
of AI Artifacts, e.g., AI papers, datasets, assets, applications and embedded boards.  Users can search, 
browse, and bookmark AI Research from the collection, as well they can create, publish, download, 
sell and buy AI Artifacts from the AI Marketplace.  
 
The BonsAPPs AI-as-a-Service layer (AIaaS) will provide access to low-end devices and edge platforms , 
to enable more pervasive AI applications, in the modern IoT scenario. It will be scalable, providing 
appropriate support to both end-users and AI Talents1 in a way that does not require high-intensity 
involvement by technical experts.  Regarding edge processors, it is paramount to maximize energy 
efficiency, coupling the execution of computationally intensive tasks with reduced power envelop. 
Parallel programming and multicore accelerated architectures are gaining traction in the domain of AI 
deployment on ioT devices3. To help evaluating the deployment of AI frameworks on such 
microcontroller, the BonsAPPs service will provide a complete end to end framework, which helps AI 
talents to gather the maximum performance from these architectures.  
 
In detail, this deliverable supports the RiscV-based GAP8 (Figure 1) processor, which is commercially 
available from Greenwaves technologies 2.  In chapter 2 we describe the PULP architecture, which is 
the basic structure of the GAP processors. Then we present the quatization tools we intend to use for 
deploying neural networks on our the GAP8 multicore platform. Finally, we describe the docker, 
available on the BBonseyes AI Marketplace, to quantize and deploy a network on the HW target. 
  
  
 
 
 

 
 

Figure 1 Gapuino board based on GAP8 

                                                           
1 AI Talents are researchers, PhDs/post-docs, engineers/developers or data scientists that have capabilities to 
resolve AI challenges 
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2 PULP Architecture 
 
This section provides an insight to the PULP multicore architecture. We briefly describe the cluster 
and the connected peripherals, and we give some pointers for documentation and other resources 
for a detailed description of the ISA and the architecture. 
 
2.1 Documentation 

• https://pulp-platform.org/: Official site of the PULP platform 
• https://pulp-platform.org/pulp_training.html: In-depth tutorials to understand and learn the 

PULP architecture, software developer kit, and tools. Includes video lessons and tutorials on 
a ready-to-use virtual machine. 

• https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html: 
GreenWaves’ GAP8, an open-source, multi-core platform built upon the PULP paradigm. 

• https://gvsoc.readthedocs.io/en/latest/: GVSOC, light and flexible instruction set simulator 
which can simulate GreenWaves’ GAP8 IoT application processor. Full applications with real 
device drivers (cameras, microphones, LCDs) can also be simulated. 

 
2.2 PULP Architecture 
The PULP (Parallel processing Ultra Low Power platform) project was born to respond to the unmet 
demand for high-computational power at the edge with a low power budget.Since its creation, many 
chips have been produced following its philosophy, available at https://pulp-
platform.org/implementation.html.All the existing chips share the following features: 

• Low-power platform, capable of switching to a sleep state with minimal power consumption 
when not performing tasks. 

• High-performance on demand, to manage high frame-rate requirements with the lowest 
energy budget 

• High flexibility and programmability, to keep on track with the rapid development in the 
computer vision field of study. 

 
 

 
Figure 2 PULP cluster and SOC architecture 

 

https://pulp-platform.org/
https://pulp-platform.org/pulp_training.html
https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html
https://gvsoc.readthedocs.io/en/latest/
https://pulp-platform.org/implementation.html
https://pulp-platform.org/implementation.html
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In order to achieve high computation performances, PULP uses a cluster of OpenRISC cores, typically 
4 to 8. They are called the Processing Elements (PEs) and allow various degrees of data or task-level 
parallelism. The cores have been optimized to reach high instruction-per-cycle values over a wide 
range of applications, including control-intensive code. PEs share the same L1 multi-banked tightly 
coupled data memory (TCDM). The TCDM has several ports equal to the number of PEs, allowing 
concurrent access to different memory locations. Each PE also has a private instruction cache, but no 
data cache. TCDM size is variable, but usually smaller than the L2 memory. 
 
A multi-channel DMA allows for fast memory transfers between cores, L2 memory (32 to 128 KB range) 
and peripherals. It’s connected to the TCDM with a low latency interconnect, the same used by the 
PEs. This eliminates any form of internal buffering when managing L1 data transfers. The cluster 
domain is connected to all external resources and peripherals via a peripheral interconnect. 
In order to provide energy efficiency, each core can operate on private voltage and frequency. To do 
so, a Frequency-Locked Loop (FLL) is implemented on SoC level. A set of clock dividers (one for the 
SoC, and one for each cluster core) can divide the FLL-generated clock frequency. For the voltage, a 
Body Bias Multiplexer (BBMUX) is used. It works synergically with the Power Management Unit (PMU) 
to quickly switch each part of the architecture between normal and "boost" mode, whenever the 
computed task needs it. The PMU guarantees that the different operating modes stay transparent to 
the software, by generating control signals for fetch enables, clock gating units, and the BBMUX. 
 
Other peripherals integrated are a set of two Serial Peripheral Interfaces (SPIs), one for master and 
one for slave, a bootup ROM, and a JTAG interface used for testing purposes. The SPIs can be set in 
single or quad mode depending on bandwidth, can be linked to various off-chips components (like 
sensors), up to 4 slave peripherals. The peripheral architecture allows the system to be in two different 
operating modes: 

• Slave mode: PULP acts as a multi-core accelerator of a standard host processor. The host must 
load the application on PULP L2 by using the SPI master interface and synchronize the 
computation with dedicated signals. 

• Standalone mode: PULP detects external flash memory on the SPI master interface. If none 
are linked L2 is used instead.  

 

3 Quantization and deployment tools 
Research in the domain of Artificial Intelligence represents scattered resources across the internet, 
making searching, finding, and following specific research artifacts hard. In order to mitigate that 
problem, Bonseyes AI Marketplace acts as an aggregator platform, allowing one with an interest in it 
to find, browse and follow latest research in the AI domain. Research resources on the Marketplace 
are split into two categories:  

• Research that represents papers and associated implementations of the papers, 
• Datasets that provide references to the publicly available collections of domain data. 

 
From developers' and data scientist perspective, they represent a starting point that can help in the 
process of AI systems development. Indeed, BonsAPPs project aims to provide quantization tools to 
ease the optimized deployment of AI frameworks, enabling their pervasiveness on the market. In this 
chapter, we introduce NEMO, a quantization tool, and DORY, a deployment tool specially tailored for 
PULP-based architectures. 
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3.1 NEMO 
Quantization is a critical point to enable low-energy execution of neural networks on edge-constrained 
devices. Recent developments show that applying 8-bits integer quantization reduces the memory 
occupation of 4X and the energy per inference by an even higher factor, without lose in accuracy.  
 
To deploy network on PULP devices, we decide to apply post-training quantization or quantization-
aware training. The first uses a simple tuning dataset to convert a floating point network with frozen 
weights to its integer counterpart. The data are used to set the minimum and maximum margins of 
the intermediate activations of the network. The latter exploits the whole training set to re-train the 
network and produce the so-called fake-quantized network, a network whose weights are yet floating-
point, but discretized to 2N values. In both the cases, the final step consists of translating the network 
in a full-integer one, where the values of the integer values are associated to their floating point 
counterpart. Note that on the deployment platform, the whole execution is performed with only 
integer values and integer arithmetic. 
 
We perform all these steps with our tool, NEMO, Neural Minimizer for pytOrch, which allows choosing 
between post-training and quantization aware training and performing the graph transformation from 
floating point to integer with few lines of python code. This tool is fully integrated in the container 
that we provide for the deployment of neural network on the edge and it produces outputs as open 
neural network exchange (ONNX) graphs, where both the topology and the parameters of the target 
network are stored. 
 
The quantization technique applied is the linear quantization to both activations and weights. 
Noteworthy, using non-linear quantization would lead to a slightly higher accuracy, at the cost of a 
much more complicated execution on the target platform.  
 
In the docker file a scrip has been included to run the MobilenetV1 example: 
 
 
python3 test.py 
 
source sourceme.sh 
 
-number of board to use, 10 for gapuino- 
 
cd dory/dory_examples/ 
 
python3 network_generate.py --sdk=gap_sdk --network_dir=../../ 
 
cd application/ 
 
make clean all run platform=gvsoc CORE=8 
 
To flash the example directly on the board the parameter   
 
platform=board 
 
is required at compiling time, and the USB driver must be exposed while launching the docker  
 
--privileged -v /dev/bus/usb:/dev/bus/usb 
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3.2 DORY 
The second tool employed for the deployment of neural networks on PULP nodes is DORY, our 
memory-oriented deployment tool . This tool fills the gap between the full integer graph and the final 
C code needed to run the network on the target. Specifically, the tool solves the following problems: 

- Starting from the .ONNX graph produced by NEMO, it fuses operators to match the ones 
present in the available kernels for PULP platforms (ONNX Decoder). 

- For each layer, it analyses the memory requirements and creates the corresponding mapping 
on the different level of memories to minimize the latency to execute the layer (Layer 
Analyzer); 

- It parses the transformed graph to generate the execution network file (Network Parser). 
 
DORY targets a compute node with three levels (L3, L2, and L1) in the memory hierarchy. It 
supports L3-L2 and L2-L1 tiling of both weights and activations. Storage of weights in L3 (> 512 
kB) is essential for the deployment of most non-trivial networks. On the other hand, activations’ 
tiling is typically necessary only for networks working on high-resolution images with big spatial 
dimensions, which are rare in the edge computing domain.  

The final output of DORY is an ANSI C file that embodies the whole DNN execution and can be 
compiled for the target platform. 

 
3.2.1 ONNX Decoder 
The first operation performed by DORY is decoding the input ONNX graph representing an 
already quantized DNN, and reorganizing it in a set of layers. In DORY, a layer corresponds to a 
canonical sequence of operations per formed by distinct ONNX graph nodes (Figure 4). Each 
layer includes: 
 

i) Linear/add/pooling operation,  
ii) an optional Batch- Normalization operation,  
iii)  a Quantization/Activation operation.  

 
Each DORY layer uses quantized inputs, outputs, and weights, while the representation of any 
temporary data is 32-bit signed integer. 
 
3.2.2 Layer Analyzer 

In the first optimization phase, DORY layers are considered separately from each other, using only 
weight dimension information from the previous layer. The layer analyzer includes two 
submodules: a platform-agnostic tiling solver, and a SW-cache generator. 

 
3.2.2.1 DORY Tiling Solver 
In the following discussion, we denote a buffer residing in Li memory as Lit, where t is the name 
of the tensor. The Solver relies on a 2-step engine, which solves the L3-L2 tiling constrained 
problem first, and the L2-L1 one afterwards. With L3-L2 tiling, we enable storing activations and 
weights in the L3 off-chip memory instead of the on-chip L2. With respect to tools that do not 
support L3 tiling for activations, such as Tensorflow Lite Micro, this feature enables the support of 
significantly larger layers. The Solver verifies whether the layer memory occupation fits the L2 
memory input constraint or needs to be stored in L3: 
 

L2w,next + L2w,curr + L2x + L2y < L2  
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We search an L3 tiling solution using a five-stage cascaded procedure. At each stage, we try to 
tile a different selection of buffers to fit the constraint of above equation. Whenever possible, 
the tiler tries to avoid L3-L2 tiling of output activations, which always requires a double number 
of transfers (from L2 to L3 when produced, and from L3 to L2 when consumed by another layer). 
Instead, the tiler tries to keep output activations in L2 as much as possible. If a stage satisfies 
the equation, the L3-L2 Tiling Solver is stopped and the dimensions of tiles are saved. Otherwise, 
the next stage is tried. 
 

I. stage 0. L3-tile x, w, y = OFF, OFF, OFF. If the equation is directly satisfied, we proceed 
without L3-L2 tiling. 

 
II. stage 1. L3-tile x = ON. This solution is selected when the output of the previous layer was 

tiled in L3, and therefore input tiling cannot be avoided. Tiling is performed along the hx 
(height) dimension of the input, to avoid 2D transfers at the L3-L2 interface. The tiler splits 
the layer in a series of identical ones that  work on a different stripe of the input image. 

 
III. stage 2. L3-tile w = ON. Weight tiling is enabled on the Cy (channels) dimension, dividing 

the layer in a set of smaller layers that work on different channels of the output image with 
Cy

1 < Cy. This  solution can  only  be selected when the output of the previous layer is 
already in L2. 

 
IV. stage 3. L3-tile w , y = OFF, ON.  Weight tiling is disabled while output tiling is enabled: the 

approach is similar to input tiling, but requires doubling the DMA transfers for the tiled 
tensor across the full network execution. 

 
V. stage 4. L3-tile w, y = ON, ON. The L3 tiling is enabled on both buffers, y, weights. This 

solution is selected when no other solution can fit L2. 
 
After the L3 tiling step, the DORY solver processes the layer to find a suitable L2-L1 tiling scheme, 
which requires more effort due to the typically small sizes of L1 memories.  Compared to high-
end computation engines, with much larger memories, a suboptimal sizing of the tensors for 
the L1 small MCUs memory can be even more detrimental in terms of performance. DORY 
abstracts this as a Constraint Programming (CP) problem and exploits the CP solver from the 
open-source OR-Tools developed by Google AI to meet hardware and geometrical constraint 
(e.g., Ct for output and weights must be the same), while maximizing an objective function, e.g. 
maximizing the utilization of the available L1 memory. 
 
Topological and geometrical constraints are inserted to respect the relationships between each 
tensor’s characteristic dimensions and other parameters of a layer. 
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Figure 3 DORY L3-L2-L1 layer routine example. On the left, the I/O DMA copies weights tile in case only Cy is L3-tiled. Two different 

buffers are used for L2w. Then, the Cluster DMA manages L2-L1 communication using double-buffering, while the cores compute a kernel 
on the current tile stored in one of the L1 buffers 

 
3.2.2.2 DORY SW-cache Generator 

The SW-cache Generator is charged of automatically generating C code orchestrating the 
execution of a whole layer given the tiling solution found by the Tiling Solver. It instantiates 
asynchronous data transfers and calls to the backend kernels,  without  any manual  effort.  
DORY uses a triple-buffering approach for the communication between L3-L2 and L2-L1 memories: 
specifically, double-buffering is applied simultaneously between L3-L2 and L2-L1 (Figure 3), and all 
data transfers are pipelined and asynchronous. With this approach, we can almost completely hide 
the memory transfer overhead. While the code generator is necessarily not platform-agnostic, the 
approach we follow can be easily generalized to any computing node with a three-level memory 
hierarchy. 

 
Table 1 DORY L2-L1 loop nest implementing the double buffering scheme. At each most internal loop iteration, two asynchronous Cluster 
DMA calls are made to copy the weights and input activation of the next tile into L1 memory, the basic kernel is executed on the current 
tile, and one other cluster DMA transfer is executed to copy the output back on the L2 memory 

 
Table 1 provides DORY’s scheduling scheme of L2-L1 layer execution, through LTO, LTW, LTH, and 
LTI loops on output channels, height, width, input channels tiles, respectively. Loop iteration 

bookmark://_bookmark24/
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limits are statically resolved by the DORY tiling Solver. Moreover, DORY autonomously controls 
the complete execution of the layer, by managing padding, stride, and overlap for every single 
tile  (e.g.,  padding  > 0 for border tiles whereas padding = 0 for internal ones, when the input 
padding parameter is > 0). Using statically resolved parameters, we maximize the usage of 
immediates, reducing load/store operations inside the inner loops of the layer tiling. 
 
The layer-wise loop nest detailed in Figure 3 is executed in three concurrent pipeline stages:  

i) a new computation starts and fill the output buffer that was not used in the previous 
cycle;  

ii) the results of the last cycle are stored back in L2;  
iii) a new set of inputs is loaded in L1. At each pipeline cycle, we swap the load and the 

execution buffer (swap operation of Listing 1) to enable double buffering. 
 
3.2.3 Network Parser 
 

 
Table 2 DORY network execution loop 

 
After layer-wise tiling has been completed by the Layer Analyzer, DORY uses the information 
extracted from all  the layers to build a network graph, considering every single layer as a callable 
function. Table 2 showcases the execution loop of the DNN execution as created by our framework. 
At each step, three main tasks are concatenated: 
 
i) we transfer from L3 the weights of the following layer. 
ii) a new layer is executed pointing to the correct buffers inside the memory stack;  
iii) input and output buffer offsets are updated. 
 
Similarly to single layers, the network-wise code is generated automatically without programmer 
intervention. DORY produces a single function that can be called inside a custom application by 
passing two externally allocated memory buffers (for L1 and L2) and their maximum size as 
parameters. 
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3.2.3.1 Buffer allocation stack & Residual connections 
To allocate layer-wise input and output buffers in the L2 memory, we created a two-stack strategy, 
employing a strategy based on a single bidirectional stack designed to avoid memory 
fragmentation and enable the execution of a sequence of differently sized layers. Buffers are 
allocated/deallocated from the buffer allocation stack, which is constituted by two concurrent 
Last-In-First-Out stacks growing in opposite directions. At the end of each layer’s weight buffer 
allocation, we reverse the end of the stack for the next memory allocations. By construction, the 
bidirectional stack is at worst as big as two concurrent stacks growing in the same direction. For 
example, in a simple case without residual connections the dimension of our bidirectional stack 
is: 
 
Dstack = maxi(L2x,i + L2w,i + L2w,i+1 + L2x,i+1) 
 
which is always less or equal than the size of two concurrent stacks Dstack,1, Dstack,2 due to the 
triangle inequality. 
 
Before executing the i-th layer, the allocator manages the weight buffer L2w,i and output buffer 
L2y,I; notice that L2x,i is already allocated as the L2y,j of a previously executed j-th layer (or the 
input of the network). To manage residual connections, each L2y,i buffer has a lifetime counter 
associated. To allocate a buffer in the stack for the i-th layer, as shown in Figure 3 : 
 

1. one of the two corners of the stack is selected depending on a begin_end flag that is 
switched at each new weight allocation; 

2. the allocator deallocates the last L2w, i-2 buffer on the corner; 
3. the allocator checks if L2y, i-2 has its lifetime counter set to 0; if so, it is deallocated; 
4. L2y, i, L2w, i are allocated in order in the selected corner (with L2w,i nearest to the 

pointer); 
5. the lifetime counter of L2y, i is set to the lifetime of the activation buffer, i.e., the number of 

layers to be executed before its deallocation. 
6. all lifetime counters are decreased by 1. 

 
The buffer allocation stack is naturally suited to execute a network with different branches (i.e., 
residual connections). DORY always prioritizes the branch with the highest number of nodes. The 
overall size of the stack is computed offline statically, taking into account all residual connections: its 
dimension depends on the maximum sum of memory of two subsequent layers plus all the residuals 
from the previous layers. 
 

 
 

Figure 4 Network structure of ONNX 

4 Docker structure 
In this section, we describe the Docker file structure that can be used to quantize and deploy neural 
networks on the GAP processor. The created docker imagine allows the setup of the PULP-based 
platforms, quantization and cross-compilation of the selected AI-App and the management of the 
platform. Once the repositories are pushed to the BonsAPPs’ gitlab account, the docker images will 
be built and stored in the BMP. 
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4.1 Download and installation 
• Download and install docker on your machine from https://gitlab.com/bonseyes/platforms/mcu-

workflows/gap8 
• (For Windows users only) install PowerShell from here. 
• Start the Docker daemon. On Windows, this is done by opening Docker Desktop. 
• Open a shell prompt and run this command line: 

docker pull dequi/gap-sdk   
• Once the download finishes, you can run the Docker image into a container with the following 

line:  
docker run -it dequi/gap-sdk:latest 

 
• That’s it! You are now ready to work with the GAP_SDK, NEMO and DORY in a command-line 

based environment. 

 
 
4.2 Docker image description 
The docker image you can download following the guide in the paragraph above (4.1) is based on the 
Ubuntu 18.04 LTS “Bionic Beaver” release. It is a fully working Linux machine already set up for 
developing and implementing AI-Apps on PULP-based architectures (section 2) using the GAP SDK, 
and the tools explained in section 3 of this document, NEMO and DORY. 
 
There is no need to install anything on the container, as the dependencies required are all already 
satisfied. As the container is based on an Ubuntu image, to date the only user interface available is 
through command lines. Please refer to the official Docker documentation if you want to mount your 
volumes in the container’s workspace here. 
 
4.3 GAP_SDK 
Once the container is launched, the default working directory the container is 
/gap_riscv_toolchain_ubuntu_18/gap_sdk/, where all the necessary tools for deploying your 
applications are stored. 
 
The content of this directory is as follows: 

• Docs: Runtime API, auto-tiler, and example application documentation. 
• rtos: Directory with the available runtime operating systems available, including FreeRTOS 

(https://www.freertos.org/features.html) and PULP-OS, a simple open-source operating 
system developed by the PULP project. Both use the open-source PMSIS as system layer to 
provide common APIs for applications. 

• sourceme.sh: A script for configuring the GAP SDK environment. 
• Examples: Examples of runtime API usage. 
• nemo: Directory containing the installation of the NEMO tool for minimizing neural network 

models developed in Pytorch. 
•  dory: Directory containing the installation of the DORY tool for deploying DNNs on MCU. 

 
More information about the GAP_SDK, including how to compile and run the “hello world” example, 
allocate memory, use event and thread scheduler APIs, use the DMA, synchronize cluster cores, 
measure performance and using peripherals, can be found at https://greenwaves-
technologies.com/manuals/BUILD/PULP-OS/html/index.html. 
 
 

https://gitlab.com/bonseyes/platforms/mcu-workflows/gap8
https://gitlab.com/bonseyes/platforms/mcu-workflows/gap8
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-windows?view=powershell-7.2
https://docs.docker.com/storage/volumes/
https://www.freertos.org/features.html
https://greenwaves-technologies.com/manuals/BUILD/PULP-OS/html/index.html
https://greenwaves-technologies.com/manuals/BUILD/PULP-OS/html/index.html
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4.4 GVSOC 
A lightweight and flexible instruction set simulator which can simulate GreenWaves' GAP8 IoT 
application processor is already installed in the docker image. You can run your applications on this 
simulator by using the platform=gvsoc option when compiling and running with the gap_sdk toolchain. 
The virtual platform is simulating the architecture, which is described by the specified system 
configuration, described with a JSON file. 
 
This can be first done through the option --config-file to give the path of the JSON file. This can be 
either an absolute path or a relative path, in which case the config isearch in the paths given by the 
environment variable SDK_CONFIGS_PATH, which contains a list of possible paths separated by “:”. 
The configuration is a high-level description of the architecture, where all important properties are 
specified (e.g., memory sizes). This high-level view of the architecture is used to generate a low-level 
and detailed view of the architecture which is used by gvsoc to know what to instantiate, configure 
and connect. Both levels can be customized by the user. The high-level view is called the template, 
and can be customized to easily change architecture properties such as memory sizes. The low-level 
view is called the configuration and can be customized to change properties of one specific component, 
such as a specific behaviour of one core. 
 
Options to the virtual platform are passed by customizing the system configuration. 
This can be first done using the option --property=<path>=<value> to specify a property in the JSON 
file to be overwritten; <path> is giving the property path in the JSON file where the property must be 
overwritten; and <value> the value to be set. As a JSON file is hierarchical, <path> describes a 
hierarchical path, like a file system path. As described in the previous section, a property can be 
changed either in the template or in the configuration. Any property beginning with config/ will 
change a property in the configuration while the others will change it in the template. 
 
The virtual platform allows dumping architecture events to help developers debugging their 
applications by better showing what is happening in the system. For example, it can show instructions 
being executed, DMA transfers, events generated, memory accesses and so on. 
This feature can be enabled and configured through the option --trace. This option takes an argument 
which specifies a regular expression of the path in the architecture where the traces must be enabled, 
and optionally a file where the traces should be dumped. All components whose path matches the 
specified one will dump traces. Several paths can be specified by using the option for several times. 
 
One difficulty is usually to find out which paths should be activated to get the needed information. 
One method is to dump all the events with --trace=.*, then find out which one are interesting and 
then put them on the command line. Here are the paths for the main components (note that this can 
differ from one chip to another): 
 

• /sys/board/chip/cluster/pe0: Processing element, useful to see the IOs made by the core, 
and the instruction it executes. You can add /iss to just get instruction events. 

• /sys/board/chip/cluster/event_unit: Hardware synchronizer events, useful for debugging 
inter-core synchronization mechanisms 

• /sys/board/chip/cluster/pcache: Shared program cache accesses 
• /sys/board/chip/cluster/l1_ico: Shared L1 interconnect 
• /sys/board/chip/cluster/l1/bankX: L1 memory banks (the X should be replaced by the bank 

number) 
• /sys/board/chip/soc/l2: L2 memory accesses 
• /sys/board/chip/cluster/dma: DMA events 
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The virtual platform is by default simulating only a stand-alone chip with a few default devices which 
are required to boot a simple example. Device models such as camera, flash or microphones can be 
connected in order to run full applications. 
 
4.5 DORY Examples 
A set of models are already available for testing and learning how to use DORY. The set contains a 
MobilenetV1-128 and 4 other custom networks. 
 
You can execute the tool by running the network_generate.py python script. This script has different 
parameters that you can specify, you can see a description of them by running the script with the -h 
option.Some of the most important ones are: 
 

• --network_dir: directory of the onnx file of the network. 
• --l1_buffer_size: L1 buffer size. Does not include stack size. 
• --l2_buffer_size: L2 buffer size. Does not include stack size. 
• --master_stack: Cluster Core 0 Stack. 
• --slave_stack: Cluster Cores 1 to 7 Stack. 
• --sdk: Selects the SDK to use. 
• --fc_frequency: Frequency of the fabric controller. 
• --cl_frequency: Frequency of the cluster cores. 

 
To build and run a new network from scratch, you first must source in the gap_sdk by running in the 
gap_sdk directory (the starting default work directory): 
source sourceme.sh 

 
Select the chip type, GAPUINO_V3 is a good candidate for testing out. 
Next, run the following commands in the dory/dory_examples directory: 
 
python3 network_generate.py –sdk=gap_sdk 
cd application 
make clean all run CORE=8 platform=gvsoc 
 

 
To generate the MobileNet V1-128 quantized in 8 bits, ready to be deployed. 
The application will also run a simple check on the network deployed, showing the number of MACs 
and Cycles required, and checking the correctness of its results. 
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5 Conclusions 
This document has introduced the complete toolchain for deploying deep neural networks on PULP 
based platforms as GAP8 processor.  
 
The document is intended to show the structure and ground of the docker file that will be used to 
support developer community on the deployment and implementation of AI framework on PULP 
processors. 
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